

Estimation of cross value

Sophie Bouchet INRAE, DIGEN

DIGEN

Methodology to evaluate genomic diversity

Evaluation of genomic diversity

Breeding and pre-breeding methodology

Breeding and pre-breeding

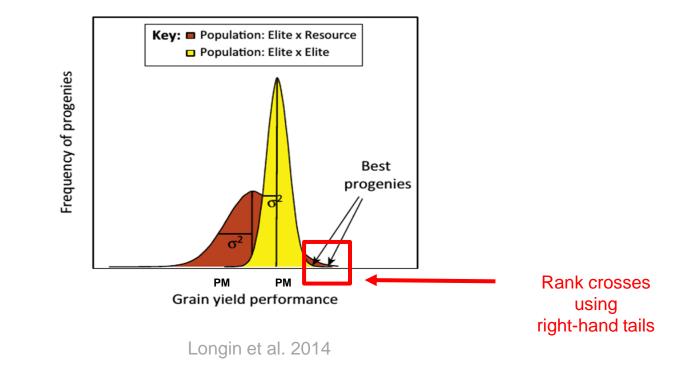
bioinformatics bio-analyse

Molecular biology and development

Quantitative genetics

Breeding / pre-breeding

How to rank best crosses?

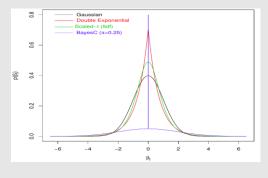


Data base

phenotypes / genotypes

2000 lines (French registered cultivars: GEVES + INRAE-AO lines)

Estimation of marker effects (genomic prediction model)



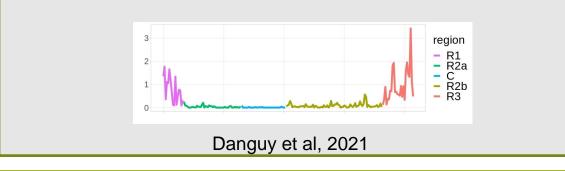
Meuwissen, 2001

Genotyped diversity panel

632 CRB landraces

Estimation of recombination rate between markers

(~genetic distance c for a bi-parental population: estimated on all bread wheat polymorphic markers)



Vector of 35K SNP effects

+

Vector of recombination rate

+

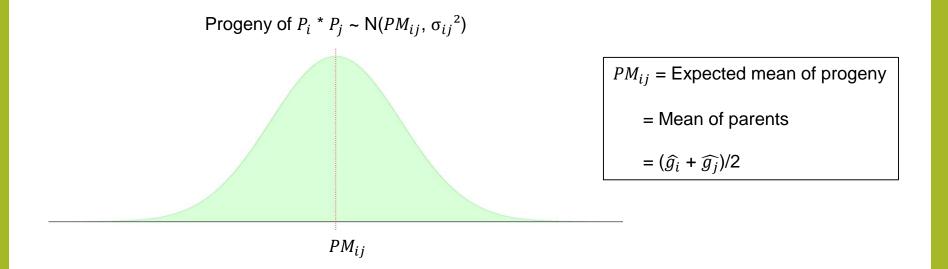
Matrix of genitors'

genotypes

Mean of the 10% best progenies (Usfulness Criterion ; UC), probability to get one progeny > threshold)

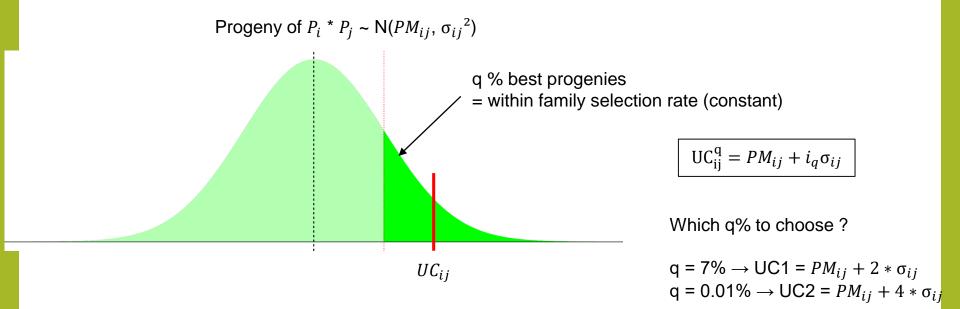
Danguy et al, submitted

How to optimize mating plan? #1: Expected mean of progeny (PM)



PM = The most classical criteria to choose crosses + no genotyping

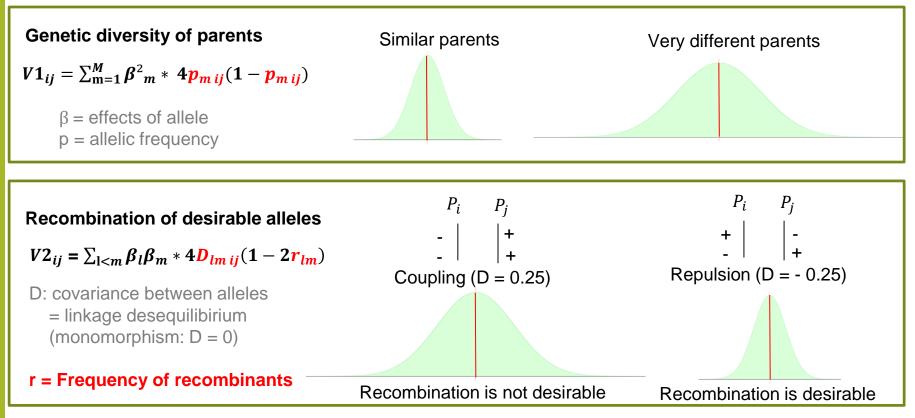
How to optimize mating plan? #2: Expected mean of best progenies (UC) Schnell and Utz 1975 Zhong and Jannink 200



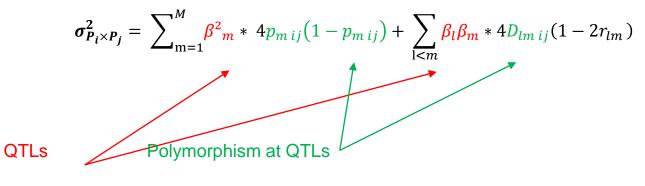
How to compute progeny variance?

Formula of Lehermeier et al. 201 for Doubled Haploids

$$\sigma_{P_i \times P_j}^2 = V \mathbf{1}_{ij} + V \mathbf{2}_{ij}$$



How to compute progeny variance?

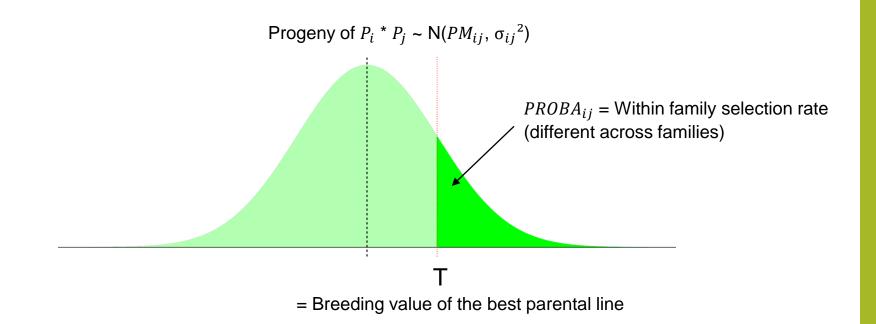


effects

Estimated with Genomic Prediction model

How to optimize mating plan ? #3: Probability to produce a progeny ≥ T (PROBA) Wellmann 2019

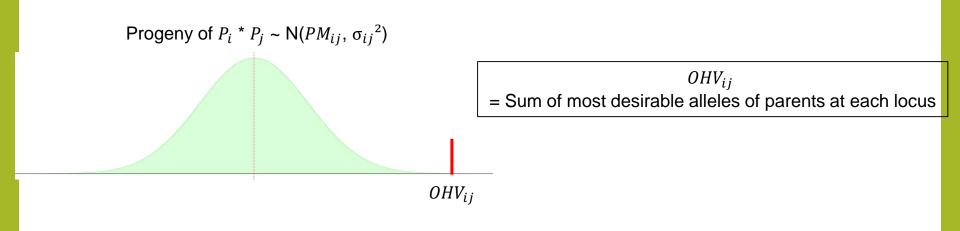
Bijma et al. 202



How to optimize mating plan?

Daetwyler et al. 2015

#4: Best « theoretical » progeny (OHV)

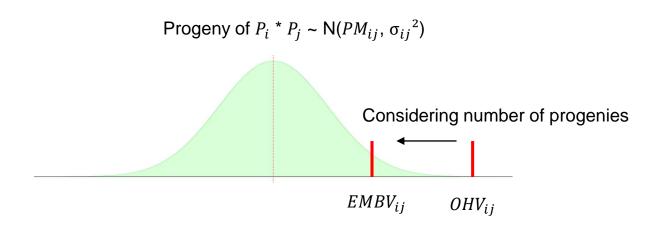


Probability of OHV ?

Müller & al. 2018

How to optimize mating plan?

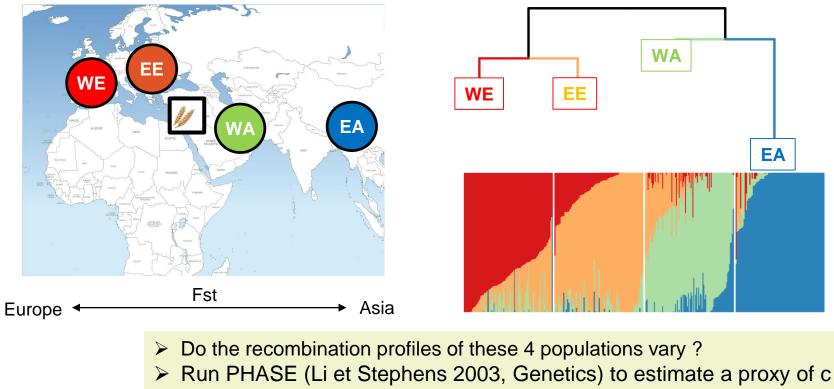
#5: Expected value of the best progeny considering the number of progenies allocated to the cross (EMBV)



EMBV of a cross depends on number of progenies

Estimation of recombination rate phD, Alice Danguy Des Déserts

371 bread wheat landraces sampled worldwide (Balfourier et al. 2019, Science Advances) 130k SNP of TABW410k (Kitt et al. 2021, Zenodo)

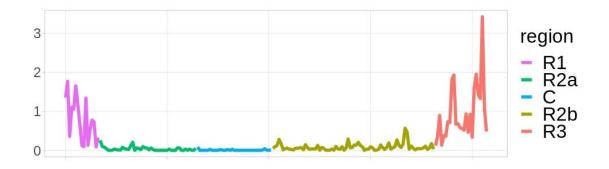


4 differentiated bread wheat populations

Run PHASE (Li et Stephens 2003, Genetics) to estimate a proxy of c (recombination rate)

Estimation of recombination rate Alice Danguy Des Déserts

- Recombination rates are globally colinear between populations and with bi-parental c estimates
- > The more divergent the populations, the more LD patterns differentiate
- > We use WE recombination vector when we work on French material



Estimate our ability to predict cross value

- Estimation of 6 Cross Selection Criteria (CSC) (Danguy et al, submitted)for Yield, Prot, Heading date, Height
- Evaluation of traits in the field: 100 crosses x 60 progenies

Estimation of marker effects

Optimisation of the training population

Geno: 18501 SNP Pheno:

Dataset	Zone	# environments	# lines (genotyped)
	North	494	436 (408)
GEVES	South	270	231 (214)
	North	194	2543 (1581)
INRAE_AO	South	94	596 (375)
Both	Both	966	3192 (2107)

Estimation of marker effects

Optimisation of the training population

- 1 Environment = 1 year x 1 location
- Considering INRAE-AO & GEVES separately and together
- Considering North & South separately and together

I. Rank the environments

- a. Spatially adjusted means for each environment
- b. BLUPs for each trait using all the environments except the one to be testted (excluding common lines): TP / VP
- c. Marker effects estimation from each TP
- d. GEBVs prediction of each VP
- e. Prediction accuracy = Pearson correlation between BLUPs & GEBVs → rank environments from the least accurate to the most
- II. Remove iteratively the worst environment and estimate GEBV accuracy using cross validation

III. Conclusion:

We do not improve significantly accuracy by removing the worst environments: the data base is clean

The best training population to predict a North or South trial is the total data base (GEVES + INRAE-AO, North + South trials)

GEBV accuracy (cross-validation 60%TP / 40% VP)

	Yield	Height	Protein	Heading
BayesA	0.62	0.60	0.60	0.81
	(0.018)	(0.025)	(0.019)	(0.013)
BayesB	0.61	0.59	0.58	0.80
	(0.018)	(0.023)	(0.020)	(0.011)
BayesC	0.61	0.52	0.58	0.50
	(0.019)	(0.026)	(0.019)	(0.057)
BL	0.63	0.54	0.60	0.77
	(0.037)	(0.060)	(0.018)	(0.012)
BRR	0.63	0.52	0.59	0.65
	(0.018)	(0.022)	(0.020)	(0.016)
rrBLUP	0.62	0.52	0.60	0.65
	(0.017)	(0.017)	(0.018)	(0.015)

FSOV Predicropt trials

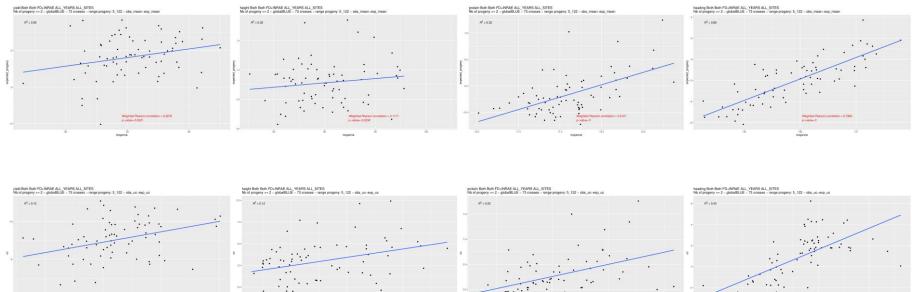
Croisements	2020	2021	2022	Total
FD	8	8	0	16
CF	0	0	7	7
EM	5	21	11	37
AO	12	20	10	42
Total	25	49	28	102

Parcelles	2020-2021	2021-2022	2022-2023	2023-2024	Total
FD	916	689	300	0	1 905
CF	0	789	800	0	1 589
EM	483	790	1 000	0	2 273
LU	420	834	1 000	0	2 254
AUZ	416	0	840	450	1 706
Total	2 235	3 102	3 940	450	9 727

predicted values vs. observed values (73 crosses)

Height

Yield



Protein

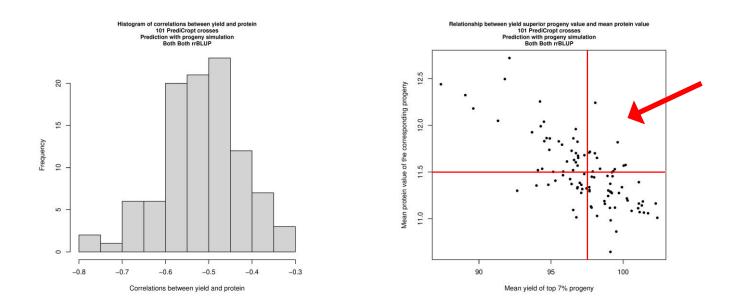
Heading date

Quelle proportion de croisements faire sur la base de l'UC?

predicted values vs. observed values (73 crosses)

Trait	Yield	Height	Protein	Heading
Cor obs./exp. mean	0.27	0.12	0.61	0.79
p-value	0.02	0.32	8.71E-09	1.68E-16
Cor obs./exp. sd	-0.15	0.46	-0.04	0.42
p-value	0.21	3.58E-05	0.71	2.36E-04
Cor obs./exp. uc	0.35	0.21	0.50	0.64
p-value	2.14E-03	0.08	5.71E-06	1.32E-09

Prediction of the correlation yield/prot, GPD+ potential



There is a variation of yield / prot correlation between crosses. Can we predict it? Is it correlated with GPD+ potential? Can we predict the crosses that can product high yield + high prot individuals? For what population size?

Accuracy of UC prediction

Progeny simulation

Trait	rait Yield H		Hei	ght	Protein		Heading	
Model	rrBLUP	BayesA	rrBLUP	BayesA	rrBLUP	BayesA	rrBLUP	BayesA
Cor obs./exp. mean	0.29	0.29	0.10	0.11	0.57	0.56	0.79	0.85
p-value	0.01	0.01	0.39	0.34	1.48E-07	2.08E-07	4.67E-17	2.93E-21
Cor obs./exp. sd	-0.17	-0.19	0.45	0.60	-0.03	0.07	0.36	0.42
p-value	0.16	0.11	7.28E-05	2.75E-08	0.83	0.55	1.98E-03	1.91E-04
Cor obs./exp. uc	0.43	0.42	0.14	0.44	0.49	0.50	0.63	0.60
p-value	1.69E-04	1.81E-04	0.23	8.19E-05	9.66E-06	8.34E-06	1.87E-09	2.65E-08

Analytic Formula

Trait Yield Height P		Pro	Protein		Heading			
Model	rrBLUP	BayesA	rrBLUP	BayesA	rrBLUP	BayesA	rrBLUP	BayesA
Cor obs./exp. mean	0.29	0.29	0.10	0.12	0.57	0.57	0.80	0.84
p-value	0.01	0.01	0.39	0.31	1.50E-07	1.90E-07	4.13E-17	2.33E-20
Cor obs./exp. sd	-0.17	-0.16	0.45	0.59	-0.02	0.08	0.36	0.36
p-value	0.15	0.17	6.46E-05	2.88E-08	0.87	0.51	2.05E-03	1.52E-03
Cor obs./exp. uc	0.43	0.43	0.15	0.48	0.49	0.50	0.63	0.53
p-value	1.77E-04	1.64E-04	0.20	1.92E-05	9.42E-06	7.07E-06	1.76E-09	1.53E-06

Analytic formula (quick) give the same results than progeny simulations Variable selection models (BAYES A in particular) are better for sd estimation when there are major QTLs (heading date, plant height)

Ability to predict the trait mean of the 7% best yield progenies of a cross

Progeny simulation

Trait	Yi	eld
Model	rrBLUP	BayesA
Cor obs./exp. cor resp. Height	0.26	0.16
p-value	0.02	0.17
Cor obs./exp. cor resp. Protein	0.39	0.38
p-value	7.45E-04	8.45E-04
Cor obs./exp. cor resp. Heading	0.61	0.65
p-value	1.13E-08	4.85E-10

Analytic Formula

Trait	Yie	eld
Model	rrBLUP	BayesA
Cor obs./exp. cor resp. Height	0.27	0.16
p-value	0.02	0.18
Cor obs./exp. cor resp. Protein	0.39	0.38
p-value	7.51E-04	8.29E-04
Cor obs./exp. cor resp. Heading	0.61	0.65
p-value	1.09E-08	5.73E-10

Figures to keep in mind

r	Yield	Height	Protein	Heading
accuracy GEBV (data INRAE-AO)	0.56	0.35	0.56	0.38
accuracy GEBV (data GEVES-INRAE- AO)	0.63	0.6	0.6	0.81
accuracy UC (r)	0.43	0.5	0.5	0.64
repetability phenotype	0.55	0.54	0.72	0.89

Predict mating plan design pipeline of optimisation

Vector of cross value (CSC)

+

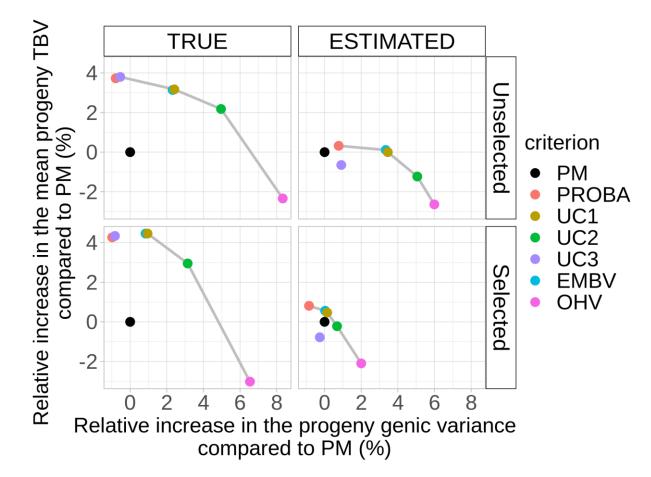
Constraints : budget, diversity threshold,

Major alleles: quality, disease...

Genetic algorithm (Danguy et al., submitted)

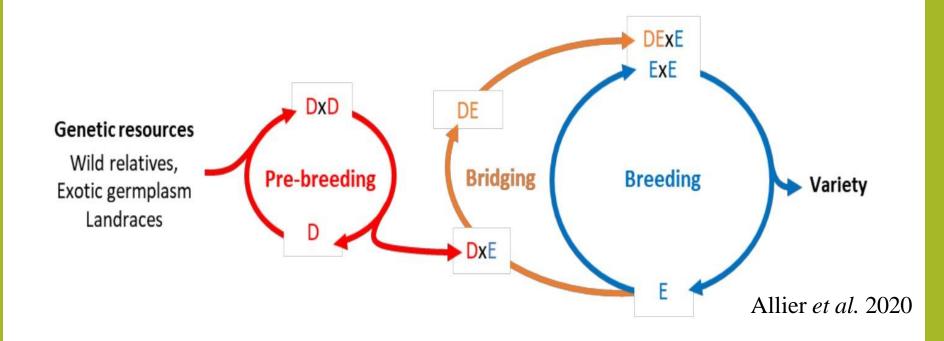
Optimisation o	Optimisation of mating design			
cross	n b of progenies			
$P_{1}^{*}P_{2}$	D ₁₂			
$P_i * P_j$	D_{ij}			

Conclusion



- Optimisation of cross design using CSC based on sd estimation increase genetic gain and / or maintain more diversity
- Genetic gain depends on var (sd) / var (PM) in the cross progenies

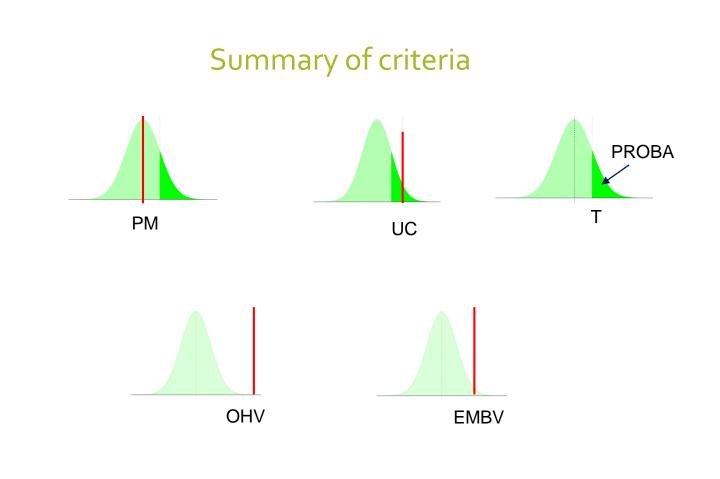
Objectif: Optimisation des plans de croisements / ré-introduction de diversité



Contraintes maladies Contraintes qualité Contraintes diversité

Merci pour votre attention

- Unités expérimentales (essais au champ)
- FD (croisements et essais)



Which criteria provides best progenies?