

😲 Plan

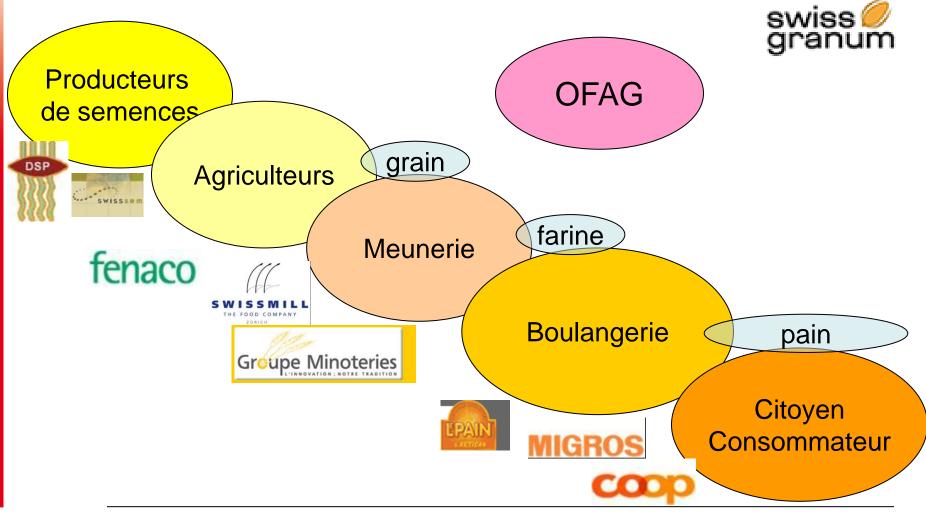
- Le programme de sélection du blé d'Agroscope ACW
 - Le contexte
 - Les objectifs
 - Les résultats
- Exemple d'interactions avec la filière
 - Protéine-Gluten-Rendement-Qualité boulangère

Particularités du programme de sélection suisse (1)

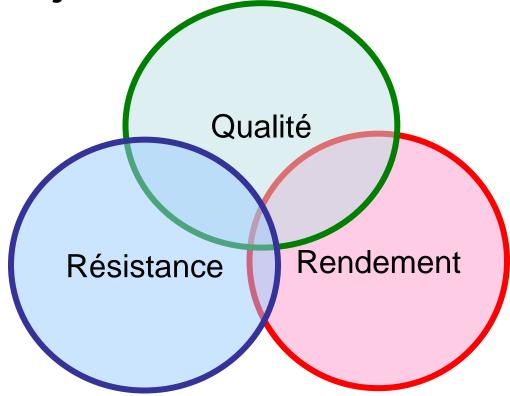
 Un programme plus que centenaire qui a gardé les mêmes objectifs de sélection

→ base génétique solide

- Sélection de blé d'automne et de printemps (depuis ~1950)
 - → diversité apportée par le « pool » des blés de printemps
 - + résistances, qualité boulangère
 - agronomie, adaptation
- Programme de sélection public
 - → objectifs à long terme

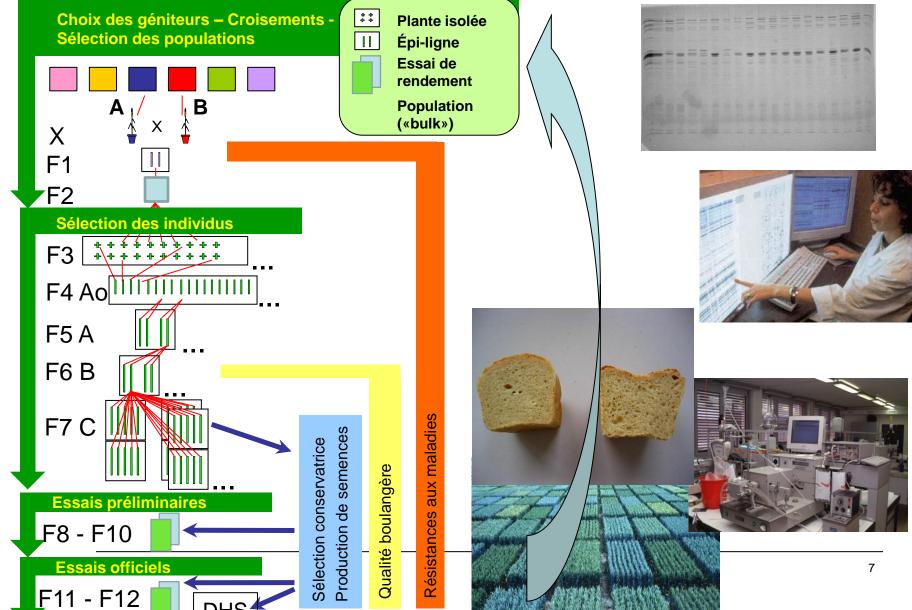

(p.ex. germination sur pied, spécialités, résistances)

Particularités du programme de sélection suisse (2)


- Conditions cadres « helvétiques »
 - système de classe de qualité hérité de l'ancien monopole de la régie fédérale des blés
 - paiements directs : PER (prestations écologiques requises), système « extenso » (400.-CHF/ha; >50% de la production)
- Marché indigène coûts de production élevés, pratiquement pas d'exportation
- → nécessaire adéquation aux besoins indigènes exigeants >75% des surfaces en blé panifiable le sont avec des cv d'Agroscope
- Proche de l'interprofession « swissgranum »
 - → écoute et anticipation des besoins des utilisateurs

Unterprofession swissgranum

www.swissgranum.ch

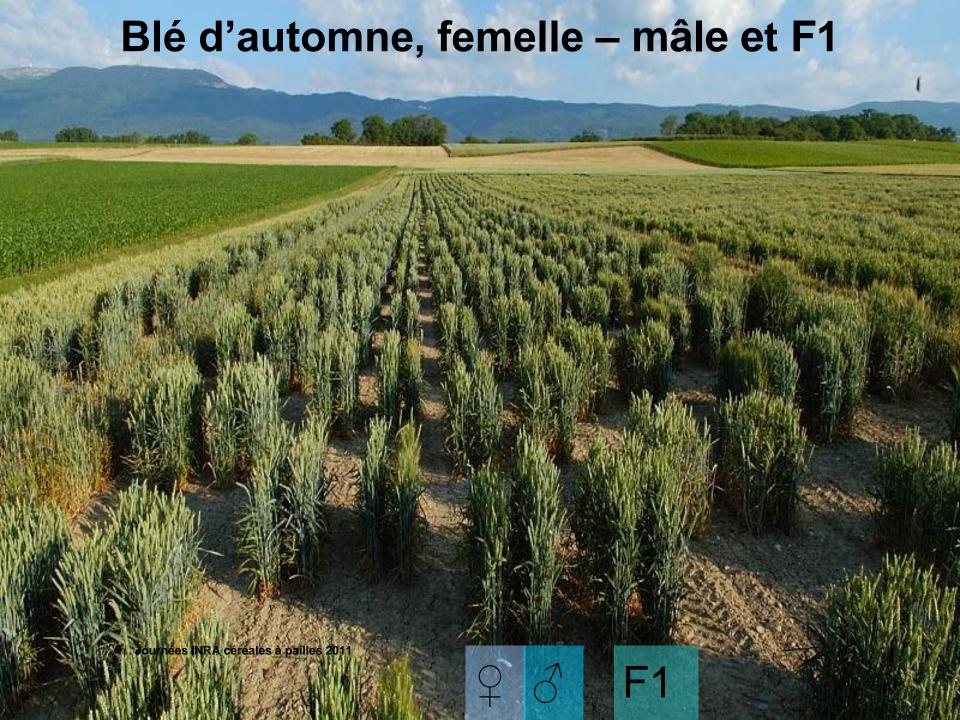

Les objectifs de sélection

- Leader en Suisse pour les qualités Top et 1 (BAF)
- Résistances suffisantes pour la culture en « extenso » dans 85% des situations (helvétiques)
- Des bons rendements même en extensif (~130 UN/ha)

Agroscope

Le cycle de sélection

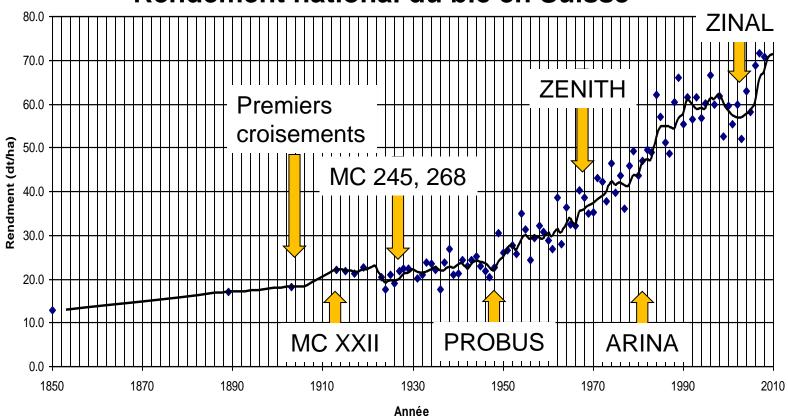
Hybridation


250 x blé automne

~100 x blé printemps

~150 x triticale

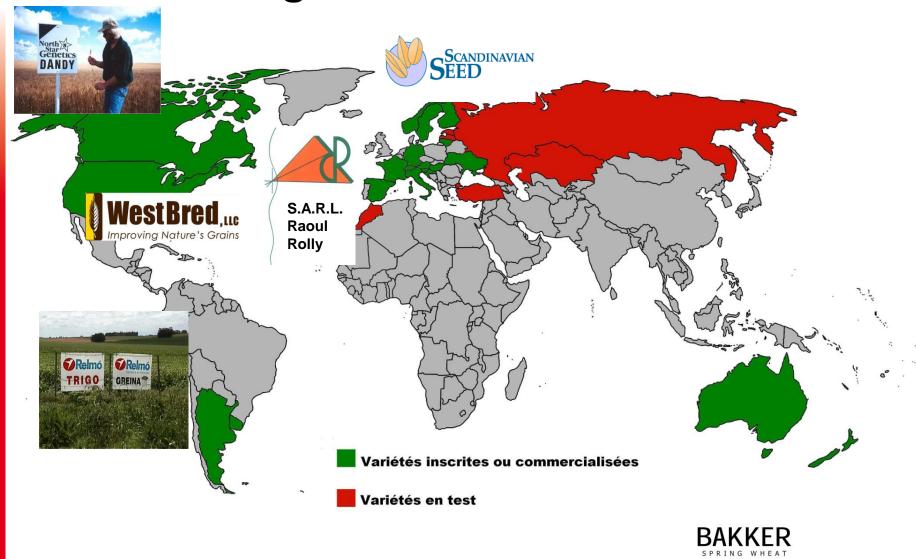
~50 x soja



Ça marche! Le progrès de sélection

La sélection est efficace.

33 à 63% du progrès est attribuable à la sélection.

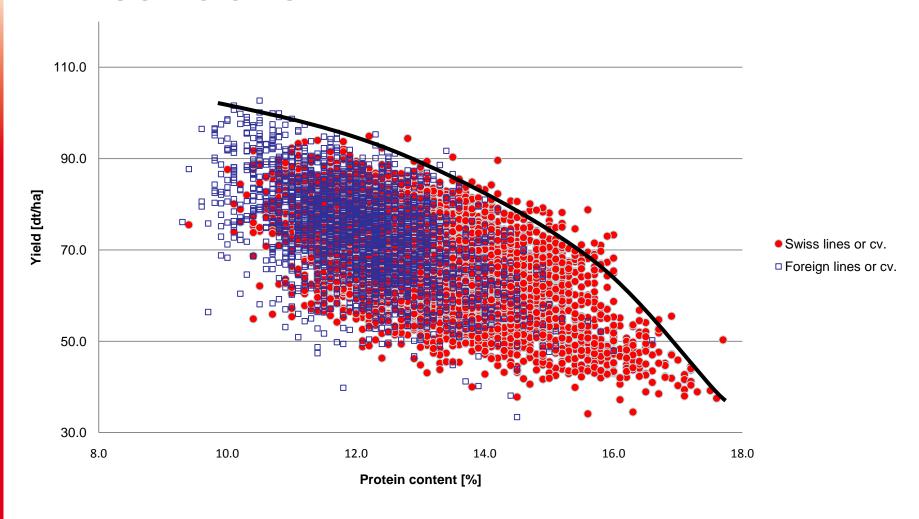

Les inscriptions

- Nombre d'inscriptions de blés entre 1999 et 2011:
 - •En Suisse: **59** (34 automne + 25 printemps)
 - •Dans le Monde: **40** (5 automne + 35 printemps)
- Part des blés Agroscope en Suisse (2009): **78.3**%
- Grâce à des variétés résistantes, on estime que l'agriculture économise:

~11 Mio CHF/an soit ~22 t/an matière active

0

A l'étranger (y inclus le Triticale)



Exemple de problème dans la filière: le « gluten-humide »

- La qualité boulangère est le but prioritaire du programme de sélection des blés: Q 1, Q TOP
- Mais...
 - Cette qualité doit être atteinte en conditions "extenso", avec peu d'azote.
 - Il y a généralement une forte corrélation négative entre rendement et qualité.
- Une des stratégies proposées est d'identifier les individus qui s'écartent de la corrélation :
 - Il faut repérer les génotypes qui ont un bon rendement malgré une teneur en protéine élevée.

Chercher les « casseurs » de corrélation

Est-ce la bonne corrélation ?

Table 1. Correlation coefficient between protein content or Zeleny and different bread making quality parameters. Lines and cultivars tested in the preliminary and official yield trials

between 1987 and 2010 under

"extenso" production.	Protein content [%]	Zeleny [ml]		Observations Number
	VS	V 5		(Protein
		r		content/Zeleny)
Zeleny [ml]	0.44	1	**	9580
Yield [dt/ha]	-0.60	-0.23	**	9580/9629
Wet Gluten content [%]	0.71	0.32	**	368
Farinograph: water absorption[%]	0.40	0.43	**	2048
Farinograph: Stability time[min]	0.62	0.47	**	2048
Farinograph: Mixing tolerance index [BU]	-0.31	-0.60	**	2051
Extensograph: DL/AL [index]	0.28	0.45	**	2046
RMT bread volume [ml]	0.54	0.14	**	1900
Bread volume in tins, [ml]	0.39	0.46	**	288
"500g" bread making test, volume [ml]	0.69	0.36	**	274
Laboratory tests, "schema LP90", [points]	0.49	0.86	**	317
Bread making tests, "schema LP90" [points]	0.47	0.51	**	280
Final evaluation "schema LP90" [points]	0.53	0.75	**	280

Est-ce la bonne corrélation ?

Taux de protéine ou qualité boulangère ?

- Le taux de protéine ne suffit pas à définir la qualité boulangère d'une variété.
- En fait, certaines corrélations entre taux de protéines et plusieurs tests de qualité boulangère sont relativement faibles.
- Comme ces corrélations sont faibles une autre stratégie pour améliorer le rendement et la qualité boulangère consiste à choisir les lignées qui ont une bonne qualité boulangère mais obtenue sans une teneur en protéine élevée.

V

Utiliser la qualité des protéines plutôt que la quantité

Quantité ou qualité des protéines (du gluten)

- On peut effectivement atteindre une bonne qualité boulangère avec un taux de protéine modéré si la qualité des protéines est élevée.
- C'est ce qui a été réalisé en utilisant les gluténines à haut poids moléculaires qui donnent les glutens les plus résistants.
- Parmi ces gluténines celle que l'on dénomme « 5+10 » est celle qui a le plus d'impact sur la rhéologie de la pâte. On n'est pas surpris de voir sa fréquence augmenter entre les variétés locales (~10%), les premières variétés inscrites et les inscriptions actuelles (35%).

Local cultivar Name	Glu-A1	Glu-B1	Glu-D1	Quality score	
Ausserberg 7D	1	7 8	2 12	40	
Birgisch	1	7 8	2 12	40	
Birgisch 80D	nul	7 8	2 12	22	
Bruson	nul	7 8	2 12	22	
Casut	1	13 16	2 12	62	
Chermignon	1	7 8	2 12	40	
Chermignon 906D	nul	14 15	4 12	52	
Chermignon 910A	1	7 8	2 12	40	
Chermignon 911A	1	17 18	2 12	40	
Erschmatt	1	79	5 10	65	
Frauenkirch	1	79	5 10	65	
Genève gros	1	68	2 12	14	
Guttet	1	17 18	2 12	40	
Iserables 1145A	nul	7	2 12	15	
Iserables 1145G	1	7.8	2 12	40	
Iserables 1147A	nul	7.8	2 12	22	
Iserables 1147D	1	79	5 10	65	
Iserables 1147I	nul	79	2 12	27	
Iserables 77C	1	14 15	2 12	57	
La Punt	nul	68	2 12	9	
Lens	1	79	2 12	42	
Lens	1	14 15	2 12	57	
Lens 891F	1	7 8 et 7 9	2 12	41	
Lens 892D	nul	7	2 12	15	
Lens 892F	1	68	2 12	24	
Lens 898B	nul	7	2 12	15	
Lens 899C	1	7 8	2 12	40	
Lens 899D	1	13 16	2 12	62	
		7 8	2 12	22	
Liddes Montana	nul	68	2 12	24	
	1	7.8		42	
Muestertal	1		3 12	+	
Mund		17 18	2 12	40	
Orsières	1	6.8	2 12	24	
Orsières	2*	68	2 12	39	
Orsières	1	7.8	2 12	40	
Plantahof	1	6.8	2 12	24	
Rothenbrunnen	nul	68	2 12	9	
Sarrayer	nul	68	2 12	9	
Sarrayer	1	68	2 12	24	
Sarrayer	1	7.8	2 12	40	
Savièse	1	79	2 12	42	
Savièse 847B	1	7	2 12	30	
Savièse 852D	1	14 15	2 12	57	
Savièse 853A	nul	7 8	5 10	45	
Savièse 860C	1	7 8	2 12	40	
Schmitten	nul	68	2 12	9	
Schmitten	nul	68	5 10	32	
Surava	1	79	5 10	65	
Törbel	1	18 9	2 12	?	
Unter Engadin	1	68	5 10	47	
Visperminen 639D	1	68	2 12	24	
Visperminen 647BD	1	7.9	2 12	42	
Visperterminen 047BD	1	7.8	2 12	40	
Vuiteboeuf	1	68	2 12	24	

	V					
Cultivar Name	Year of registration	Secalin	Glu-A1	Glu-B1	Glu-D1	Quality score
MC XXII	1913		nul	68	2 12	9
MC 245	1926		nul	7	2 12	15
MC 268	1926		1	68	2 12	24
PROBUS	1948		1	68	2 12	24
ZENITH	1969		nul	79	3 12	29
ZENTA	1979		nul	79	4 12	25
EIGER	1980		2*	79	4 12	55
SARDONNA	1980		2*	79	5 10	80
ARINA	1981		nul	7.8	2 12	22
BERNINA #	1983	secalin	nul	7.8	5 10	27
FORNO	1986		nul	79	5 10	50
GARMIL	1987		nul	7.8	2 12	22
RAMOSA	1989	secalin	1	7.8	5 10	38
BOVAL	1990	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	nul	68	2 12	9
TAMARO	1992		1	79	5 10	65
CAMINO	1993		2*	7	2 12	45
ARBOLA#	1994	secalin	nul	68	2 12	5
RUNAL	1995		1	79	5 10	65
TITLIS	1996		1	79	2 12	42
TERZA	1996		1	7.8	2 12	40
LEVIS	1997		1	7.8	5 10	63
SEGOR	2003		2"	7.8	5 10	78
AROLLA	2003		nul	7.8	2 12	22
MUVERAN#	2004		1	7.8	2 12	40
RIGI	2004		nul	7.8	5 10	45
ZINAL	2004		nul	7.8	5 10	45
SIALA	2005		1	7.8	5 10	63
FLUELA	2006		nul	7.8	5 10	45
ORZIVAL	2006		nul	7.8	2 12	22
CIMETTA	2007		2*	7.8	5 10	78
MURETTO	2007		1	79	5 10	65
COMBIN	2007		2*	7.8	5 10	78
LOGIA	2007		2*	7.8	5 10	78
FOREL	2007		1	7.9	5 10	65
MAYEN	2007		2*	79	2 12	57
CH CAMEDO	2007		1	79	5 10	65
DELLORO	2007		nul	68	2 12	9
CH NARA	2008		1	7	5 10	53
SURETTA	2008		nul	7.8	2 12	22
DUFOUR	2008		nul	79	5 10	50
CAMBRENA #	2009		nul	7.8	2 12	22
MOLINERA	2010		1	7.8	5 10	63
MAGNO			1	68	5 10	47
SIMANO			nul	7.8	5 10	45
LORENZO			1	7.8	2 12	40
CAMPIONI	schedule		1	79	5 10	65
TANELIN	2011		nul	68	5 10	32

Succès !!!! Les nouvelles variétés ont des qualités boulangères exceptionnelles

• Les nouvelles variétés dépassent fréquemment RUNAL, le standard de la classe TOP

	Cultivar name	Wet glu	iten cont	ent [%]		ratory [point]			makin [point	g tests	Tot	al [poi	int]
	Year	2008	2009	2010	2008	2009	2010	2008	2009	2010	2008	2009	2010
	RUNAL	33.8	31.0	41.2	78	72	79	81	75	66	159	147	145
	CAMEDO	30.6	30.6	36.1	65	76	81	64	69	80	129	145	161
Swiss- granum	CH CLARO	28.7	31.9	35.1	61	67	72	84	80	89	145	147	161
	NARA	32.3	31.3	33.8	82	77	82	71	63	82	153	140	164
	SURETTA (1)		36.0	41.1		58	65		68	52		126	117
	SIALA	28.5	30.8	37.3	63	74	72	70	77	86	133	151	158
	RUNAL	31.1	31.1	34.0	83	83		78	55		161	138	
Official	LORENZO		33.2	34.9		88			59			147	
	MOLINERA	30.7	30.2	35.5	77	84		85	77		162	161	
trials	SURETTA (1)	32.2	32.7	35.5	67	68		69	55		136	123	
	SIALA	27.5	29.7		74	79		75	60		149	139	

Succès ????? Est-ce la bonne solution pour les utilisateurs ?

- Malgré une production de blé basée essentiellement (83%) sur les blés de classe 1 (47.2%) et de classe TOP (35.8%), certains utilisateurs n'en sont pas complètement satisfaits.
- Le taux de gluten humide de la récolte est considéré comme insuffisant → des limites de taux de gluten humide sont imposées pour le classement des variétés dans les classes de qualité depuis 2010.

Classe de qualité	Indice de qualité requis (points)	lé sur la liste recommandée Teneurs en gluten humide* (%)	Indice agronomique requis (points)
 Тор	> 130	 ≥ 31%*	> 95
I .	> 110 à 130	≥ 29%*	> 103
II	> 95 à 110	≥ 27%*	> 110
III	> 80 à 95		> 115
Fourrager	≤ 80		> 120
Biscuit	Critères spécifiques		> 110
	• •	eurs obtenues en PER; limites mo	dulées selon le niveau global de l'ann

O

Succès ????? Est-ce la bonne solution ?

Plusieurs hypothèses peuvent expliquer cette insatisfaction de la part de certains utilisateurs:

- Changement des parts des variétés à l'intérieur des classes de qualité
- Extensification de la production (apports d'azote plus faibles)
- Climat de ces dernières années peu favorable au taux de protéine
- Gestion de la récolte par classe de qualité. Des lots de variétés et de taux de protéines différents sont mélangés au centre collecteur
- De nouvelles méthodes de panifications, plus exigeantes, se sont généralisées (pousses froides, surgélations)

Conclusions

- De nouvelles variétés de qualité exceptionnelles ont été créées
- Leur qualité est basée le plus souvent sur la qualité du gluten mais aussi parfois sur la teneur en protéine (et donc sur la teneur en gluten).
- Des ajustements au niveau de la production, de la collecte et des utilisateurs sont nécessaires afin que la qualité de ces variétés soit véritablement valorisée.

Des échanges fréquents au sein de la filière sont la clef pour anticiper les problèmes, les résoudre et ainsi la consolider

Merci de votre attention