

Clonage de gènes de résistance à la septoriose du blé

David LOPEZ

La septoriose du blé (Zymoseptoria tritici)

- Maladie la plus fréquente chez le blé
- Baisse des rendements de 15 à 20%

- Contrôle par fongicides
- Résistances contournées

02

RenKSeq: Genèse

1- Criblage d'un panel de diversité

2- Identification de varietés résistantes

3- Mutations aléatoires (EMS)

4- Identification des mutants sensibles

.03

RenKSeq: Accès à la mutation causale

Deux grand types de gènes de résistance:

- 1- Récepteurs exposés en surface cellulaire (RLK-RLP)
- 2- Récepteurs d'effecteurs spécifiques (NBS-LRR)

"Stb6 encodes a wall-associated kinase-like (WAK) protein", by C Saintenac #INRA #GDEC, #ISSDC #Zymoseptoria

Wheat receptor-kinase-like protein Stb6 controls gene-for-gene resistance to fungal pathogen Zymoseptoria tritici

Cyrille Saintenac^{®1*}, Wing-Sham Lee², Florence Cambon¹, Jason J. Rudd², Robert C. King³, William Marande⁴, Stephen J. Powers³, Hélène Bergès⁴, Andy L. Phillips⁵, Cristobal Uauy⁶, Kim E. Hammond-Kosack², Thierry Langin¹ and Kostya Kanyuka^{©2*}

- Stb16 est une RLK
- Snn1 est une WAK
- ...
- -> ciblage des RLKs

David LOPEZ / RenKSeq

.05

RenKSeq: Ciblage du « RLK-ome »

Rosids

Poplar

1192 RLKs

Malvids

Fabids

Soybean

605 RLKs

RenKSeq: RLK-ome du blé

Triticum aestivum cv. Chinese Spring predicted proteome (IWGSC)

David LOPEZ / RenKSeg

.07

74% des kinases du blé sont des RLK: 6452 protéines / 20Mb d'ADN

.08 24/ 04/ 2018

RenKSeq: RLK-ome du blé

David LOPEZ / RenKSeq

.09 24/ 04/ 2018

RenKseq: RLK-ome des blés

Intégration d'autres ressources génomiques

Proteomes annotés (RLKs / protéines prédites totales)

- IWGSC (Chinese spring) : 6 452 / 298 952
- Earlham institute (Chinese spring) : 7 064 / 249 547
- Wild emmer genome (Zavitan) : 10 168 / 398 438

Assemblages non annotés : (de novo only)

- Cadenza
- Claire
- Kronos
- Paragon
- Robigus
- Svevo

- TGAC_WGS_durum_v1
- TGAC_WGS_monococcum_v1
- TGAC_WGS_speltoides_v1
- TGAC_WGS_strongfield_v1
- TGAC_WGS_tauschii_v1
 - TGAC_WGS_urartu_v1
 - TSL_WGS_sharonensis_v1

A TGGGGAACTCCGG TG CATTTCA TAG TTCACTT AG CAGATCA TG TCCAGGGAGGAGGAGATGA TGGG TG (TCCG TCAG CGAGG TGA TCCTCTTGA TTG CGG TG ? CACATCAACACAGGAACATACTA TG TGACTGCC CAATACCAATAG CAG CTG CCCTCTTCCACTG TG (CAG TTTCACCACCTGG CTTTCGG TA TTTGG TCT (G TAACGAATAATAG TG CATACAAACCCG TTG CT ? TTACACATATTG TG TGG TTGAAGATCTTGAG CC ? CTTCTGATTGGGGGACCG CTACAGAATG CAAG TT ?

David LOPEZ / RenKSeq

Assemblage	Taille (pb)	RLK loci (pb)	Sondes
Chinese Spring IWGSC	14 347 606 634	23 254 210	70 695
Chinese Spring Earlham Institute	13 467 630 192	23 714 007	94 180
Zavitan	10 509 868 245	20 469 051	67 185
Cadenza	13 399 781 746	22 244 268	80 721
Claire	14 616 451 647	21 707 537	80 434
Kronos	10 540 467 196	14 940 058	62 134
Paragon	15 318 048 945	22 432 660	81 094
Robigus	14 791 409 785	21 874 636	79 077
Svevo	6 803 298 213	8 350 510	35 762
TGAC_WGS_durum_v1	3 386 481 085	458 483	2 374
TGAC_WGS_monococcum_v1	1 322 112 030	574 717	3 555
TGAC_WGS_speltoides_v1	1 907 878 214	552 288	3 322
TGAC_WGS_strongfield_v1	3 384 841 931	361 995	1 902
TGAC_WGS_tauschii_v1	1 200 221 237	665 015	4 139
TGAC_WGS_urartu_v1	1 657 029 501	686 599	4 167
TSL_WGS_sharonensis_v1	1 730 899 803	611 984	3 700
Somme	128 Gb	182 Mb	674 441

David LOPEZ / RenKSeq

.013

David LOPEZ / RenKSeq

014

RenKSeq: test des sondes de capture (in silico)

Estimation de la couverture: ré-alignement des sondes

RenKSeq: validation des sondes de capture (wet lab)

RenKSeq: les 7 familles de « sensibles «

.017 24/ 04/ 2018

RenKSeq: Les mutants sensibles présentent un «fitness» réduit

.018 24/ 04/ 2018

David LOPEZ / RenKSeq

Objectifs principaux:

- Séquencer de **nouvelles RLK**
- Identification de nouveaux gènes Stb
- Mise au point d'un pipeline d'identification de gènes / dessin-test de sondes de capture

Perspectives:

 Utiliser la banque de sondes pour cribler de nouvelles sources de résistances

