

Outline

- 1 Research site and high throughput phenotyping
 - 1.1 Drone 1.2 FIP

2 Projects

2.1 Caterra2.2 ClimBreed2.3 Genomic Predictions

Motivation

Stagnating wheat yield

Increasing global food demand and climate change impacts

Phenotypic and genomic prediction methods could help to cope with this challenge Stagnating wheat yield in France

(Bernhard Schauberger et al. (2018). Yield trends, variability and stagnation analysis of major crops in France over more than a century)

1) Research Site and High Throughput Phenotyping

Hight Throughput Phenotyping (HTP)

Possibility to asses crop growth under realistic conditions with high temporal and spatial resolution

HTP: Drone

Derived Traits from Drone

Height related	Final plant height	
traits	Start stem elongation	
	Stop stem elongation	
	Temperature response parameters:	Maximum growth rate
مر مرجع		Steepness ofn response
		Base Temperature
4		

Crop development: Height

Extraction of Height and Temp. Related Traits

HTFP: Field phenotyping platform (FIP)

- 4 poles of 24 m height
- 4 lots
- Operating on regular basis
- 3 m distance to the ground

Sensor:

• High-resolution RGB images

Derived Traits from FIP

Height related traits	Final plant height	
	Start stem elongation	
The second se	Stop stem elongation	
	Temperature response parameters	
Canopy cover	Time point when apparent leaf area increase is maximized	
related traits	Maximum apparent leaf area after canopy closure	
	Leaf area at 15 % final height	
	Time of canopy closure	

HTFP: Field phenotyping platform (FIP)

The new FIP sensor head: Bringing multi-view imaging into the field

13 machine-vision camera triggered synchronously

ETHZ

Additional Traits to Establish

Height related traits	Final plant height			
	Start stem elongation			
	Stop stem elongation			
	Temperature response parameters			
Canopy cover related traits	Time point when apparent leaf area increase is maximized			
	Maximal apparent leaf area after canopy closure			
	Leaf area at 15 % final height			
	Time of canopy closure			
Traits to establish	Number of plants / tillers and spike volume	ClimBreed		
	Plant height and biomass			
	Architecture			
	·			

Outline

1 Research site and high throughput phenotyping

1.1 Drone 1.2 FIP

2 Projects

2.1 Caterra2.2 ClimBreed2.3 Genomic Predictions

Laser-based weeding robot

Stefan G. with Literal device

2.1 Caterra

ETH zürich

ETH Pioneer Fellows of Aurel Neff and Patrick Barton

Useful carriers for phenotyping in nurseries?

WP1: Estimate Fruiting Potential and Efficiency

WP1: Measuring Fruiting Potential and Efficiency

Protein content

https://www.indiamart.com/proddetail/wheat-grains-19327420562.html

Senescence

Chapmann et al. (2021) Capturing and Selecting Senescence Variation in Wheat

Heading

https://site.extension.uga.edu/wilcoxcoag/2019/03/wheat-heading/

WP2: Traits related to Fruiting Efficiency

https://www.freepnglogos.com/pics/wheat

Grain size

 $\underline{https://jasoncholewa.com/2013/02/08/early-humans-wheat-cultivation-and-your-health/$

Height and temperature related traits

Lukas Roth et al. (2021) Phenomics data processing: A plot-level model for repeated measurements to extract the timing of key stages and quantities at defined time points, visualized by Andi Hund.

WP3: How to Deliver New Traits to Breeders: Genomic Prediction

Which traits are heritable?

Index to predict low / high fruting efficiency

Select these genotypes and confirm genomic prediction

Cultivation in France as a validation site

https://www.freepnglogos.com/pics/wheat

Future-climate site at Gréoux-les-Bains

2.3 Genomic Prediction

(Dario Fossati, Agroscope)

F8: Cross-Validation and Prediction of Unseen Years

Extraction of Height and Temp. Related Traits

F8: Cross-Validation and Prediction of Unseen Years

Split 5 Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

F8: CV and Prediction of Unseen Genotypes 2021 and 2022 with BayesB

F8: Correlation Between 2021 and 2022

F8: Results and Discussion: Start of Stem Elongation in 2021 and 2022

ETH zürich Higher prediction accuracy in 2022 compared with 2021

Conclusion

Aim: To use dense data of single season to gain as much information as possible about varietes with non-destructive methods

GP: Differences in prediction accuracies between traits and years

Improving trait extraction, modelling GxE interactions, or including environmental parameters could help to increase prediction accuracy

Genomic Prediction has the potential to speed up breeding process, e.g. with predicting start of stem elongation

Thank you!

Questions? Feedback?

. . .

Data 2021 and 2022

Number of genotypes / in GP / number of checks 346, 373 / 254, 242 / 4, 3 Plot size: 1.5 m x 2 m Drone: 28 m, 2.3 m/s,

Markers: 25 k snp array: most common markers in European wheat varieties, and additional markers from QTL studies

Heritability

Amount of phenotypic variance that can be explained by the genotypic variance

$$H^2 = \frac{\sigma_g^2}{\sigma_P^2}$$

 $R=\frac{i\,\sigma_G\,h}{L}$

Height related traits		Temperature related traits		
Final canopy height	0.97	Maximal growth rate	0.43	
End stem elongation	0.86	Minimal temperature	0.28	
Start stem elongation	0.48	Steepness response	0.31	

Genetic correlation F8

Modelling Temperature Response

Lukas Roth, Hans-Peter Piepho, and Andreas Hund (2022). Phenomics data processing: extracting dose- response curve parameters from high-resolution temperature courses and repeated field-based wheat height measurements

Relationship

GABI: Year-wise and overall CV of Height-related Traits

Year-wise

Overall

Overall genomic prediction accuray didn't increase compared with year-wise prediction accuracy

Calculation of GDD

$$GDD(DAS) = \sum_{d=1}^{DAS} \sum_{h=1}^{24} \begin{cases} \frac{T_{d,h} - T_{base}}{24}, & T_{d,h} > T_{base}, \\ 0, & T_{d,h} \le T_{base}, \end{cases}$$

GABI: Year-wise and overall CV of Temperature-related Traits

Year-wise

Overall

For maximum growth rate, overall genomic prediction accuray increased compared with year-wise prediction accuracy

Discussion and Conclusion

Still quite low prediction accuracies for temperature related traits

Higher prediction accuracy of start of stem elongation with GABI panel

Crop Rotation

• Since 2012: winter wheat, soybean, buckwheat and maize

Example from RGB imaging at different scales

FIP dolly, 3m distance 0.6 mm GSD

UAS, 28 m altitude, 3 mm GSD

Ground control point

Roth et(a). 2020, Plant Phenomics, DOI: 10.34133/2020/3729715

GABI: Prediction of unseen genotypes in unseen years

Prediction of unseen genotypes in an unseen environment

Focus: Effect of climate change on wheat yield Breeders aim at keeping sensitive phase «stress free»

Higher temperatures due to climate change will result in altered phenology and earlier/shorter «stress free» phase

- Escape: stay in «stress free» zone: shorter vegetation period and yield reduction
- Heat tolerance: later varieties with heat tolerance

Where is the balance?

How can our phenotypic and genomic prediction methods contribute to answer this question?

2.2 GlobalWheat

2.2 Global Wheat Dataset

Segmentation: Define a dataset with most relevant features

- Spikes
- Stem
- Leaves
- Soil

Spatial and temporal correction

Traits

Lukas Roth et al. (2021) Phenomics data processing: A plot-level model for repeated measurements to extract the timing of key stages and quantities at defined time points, visualized by Andi Hund.

(b) Covariate measurement

Lukas Roth et al. (2021) Phenomics data processing: A plot-level model for repeated measurements to extract the timing of key stages and quantities at defined time points, visualized by Andi Hund.